J Comput Virol (2009) 5:247-261
DOI 10.1007/s11416-008-0095-z

EICAR 2008 EXTENDED VERSION

Functional polymorphic engines: formalisation, implementation

and use cases

Grégoire Jacob - Eric Filiol - Hervé Debar

Received: 20 January 2008 / Revised: 19 June 2008 / Accepted: 27 June 2008 / Published online: 16 July 2008

© Springer-Verlag France 2008

Abstract With regards to the known shortcomings suffe-
red by form-based detection, an increasing number of antivi-
rus products considers behavioral detection. Following this
trend, form-based mutations could become function-based
with the apparition of functional polymorphism: a third gene-
ration of mutation mechanism, specially designed to address
behavioral detection. In effect, a same global behavior or pur-
pose (replication, propagation, residency, etc.) can be achie-
ved through different functional solutions, thus leaving space
for possible mutations. Whereas actual form-based mutation
techniques mainly modify the code structure of malware,
functional mutations modify the code functionality, and more
particularly the resulting interaction scheme with the opera-
ting system and other software. These functional mutations
could not be achieved without reaching a semantic level
of interpretation, higher than actual techniques remaining
purely syntactic. Drawing a parallel, this article underlines
the consequent relation existing between functional poly-
morphic engines and compilers. By studying the associa-
ted mutation properties, we prove that these engines exhibit
logarithmic entropy and result in a NP-complete complexity
for behavioral detection. The implementation of a prototype

G. Jacob (X)) - E. Filiol

French Army Signal Academy, Virology and Cryptology Lab.,
Rennes, France

e-mail: gregoire.jacob@ gmail.com

E. Filiol

e-mail: eric.filiol @esat.terre.defense.gouv.fr

G. Jacob - H. Debar
France Télécom R&D, Caen, France
e-mail: gregoire.jacob @orange-ftgroup.com

H. Debar
e-mail: herve.debar @orange-ftgroup.com

is finally addressed as well as its possible use for antivirus
testing and software protection.

1 Introduction

It is commonly acknowledged that form-based detection
relying on byte signatures is eventually vowed to fail. As
a consequence, malware researchers are considering new
generations of detection techniques and in particular beha-
vioral detection which can be deployed dynamically [1].
Unfortunately, for each detection solution put forward, the
attackers have developed dedicated counter-measures. Simi-
larly, functional polymorphism could be the third generation
of mutation mechanism, following polymorphism and meta-
morphism, specifically designed to address behavioral detec-
tion. In effect, behavioral detection relies on the identification
of malicious functionalities exhibited by malware (replica-
tion, propagation, residency, etc.). Each one of these func-
tionalities can be implemented through different technical
solutions leaving some degrees of freedom for possible func-
tional mutations without undermining the originally intended
purpose.

Up until now, such functional modifications have already
been used by malware writers to avoid detection: modifi-
cation, substitution, addition or removing of functionality
blocks are common practices. The numerous versions of the
Bagle e-mail worm, referenced by the different observato-
ries, are typical examples of simple functional modifications
(modifying mail subject, new backdoor, adding peer-to-peer
sharing) [2]. Even if malware writers do not start their work
from scratch, the generation of new variants from an ori-
ginal strain mostly remains manually achieved. However,
some attempts of automation are already under way with
the development of virus construction kits. Different engines

@ Springer

248

G. Jacob et al.

can be cited from which the most popular ones are proba-
bly the Virus Construction Lab (VCL), the Phalcon/Skism
Mass-Produced Code Generator (PS-MPC) and the Phalcon/
Skism’s G2 Virus Generator (G2) [3,4]. Still, the supplied
customization options remain quite basic at the functional
level (choice between appending, overwriting or companion
infection, choice between encryption or plain code). Bet-
ween two variants generated according to similar options,
the differentiation is in fact achieved through metamorphic
modifications and no real functional variation is deployed for
a given functionality.

In some ways, previous works on mimicry attacks, led in
host-based intrusion detection, seem more related to func-
tional mutations [5,6]. The principle of mimicry attacks is
to forge payloads containing a complete fixed attack hid-
den within a sequence of system calls imitating a legitimate
application. By imitation, these forged payloads can bypass
anomaly-based detectors while keeping the same effect on
the system than the original attack. However, with regards
to malware detection, most behavioral models are based on
malicious signatures similar to those used by misuse-based
intrusion detectors. Our approach will thus be slightly dif-
ferent from mimicry attacks: instead of including interleaved
blank operations inside our code, the functional mutations we
have designed enumerate the possible solutions to achieve a
malicious behavior.

From these observations, and because anticipation is a key
point in the antiviral struggle, we try to foresee and study the
possible future threat that automated functional mutations
could represent. The article is articulated according to the
following structure. A brief overview is first drawn up upon
the existing syntactic mutation mechanisms (Sect. 2). This
first overview additionally highlights the necessary enhan-
cements in order to reach mutations at the functional level.
The following part is dedicated to formalization: functional
mutations are introduced using compiler theory (Sect. 3). A
resulting mutation entropy and detection complexity are then
deduced from the formalism. The rest of the paper establishes
abridge between formalization and implementation (Sect. 4)
and explores different use cases in antivirus assessment and
software protection (Sects. 5 and 6).

2 From form-based to functional mutations

At the present time, polymorphism and metamorphism
constitute the two major advances in code mutation. These
two mutation mechanisms modify the assembly code at a
syntactic level in order to conceal any similarity between two
mutated variants. Considering the most advanced
techniques in metamorphism, embedded in engines such as
MetaPHOR [7], they remain based on practical obfusca-
tion operations. These operations either directly modify the

@ Springer

instructions (register reassignment, substitution of equiva-
lent instructions enabled by translation into an intermediate
pseudo-language) or globally modify the code structure and
its possible execution paths (junk code insertion, instruc-
tion permutations, introduction of opaque predicates) [8, p.
148, 9, p. 269, 10]. Filiol, in a recent article, formalized
the set of metamorphic transformations as rewriting rules
from an original grammar describing the malware syntax, to
a second mutated form [11]. He actually proved that well-
chosen metamorphism rules could lead to the undecidabi-
lity of the detection of the mutated forms, whereas detec-
tion remains NP-complete for polymorphic malware [12]. In
practice, the substitution of equivalent instructions is
undoubtfully the metamorphic technique which proves the
most difficult to thwart for actual detectors [13]. Sequences
of equivalent instructions may have different purposes but
their combined execution have the same global effect on the
memory. The main reason of their detection complexity is
due to the fact that they do not only alter the program syntax
but, to a lesser extent, also its semantic.

Nevertheless, even the substitution of equivalent instruc-
tions does not modify a priori the use made of the sys-
tem services and resources (these accesses will be denoted
by the terms “interaction scheme” within the paper). Using
behavioral detection, the mutated variants should theoreti-
cally remain detected because of their identical interaction
schemes. To overcome the simple instruction level of the
existing mutation techniques, the next real challenge in code
mutation lies in the research of different functionalities (com-
putations and interactions) achieving the same purpose. To
express an equivalence in terms of purpose, the manipu-
lations must necessarily be performed at a semantic level
working on more complex structures than simple instruc-
tions. Basically, a functionality is the combination of basic
instructions but also different system calls and parameters.
Two functionalities can be said equivalent if their executions
impact similarly the behavior of the host system and no lon-
ger, if they simply exhibit the same effect on memory. For
example, under a Windows operating system, modifying a
run registry key or the system.ini file have different effects
on memory but eventually the same consequence, that is to
say, to automatically start a program during the boot session.
According to this guideline, we had already introduced brie-
fly the concept of functional mutations in a previous article
[14]. We now want to provide a solid formalization and give
a proof of automated feasibility.

3 Compiler theory applied to polymorphism
Basically, the purpose of a functional polymorphic engine

is to translate the final purpose of a behavior into execu-
table code. This behavior description is often conveyed by

Functional polymorphic engines: formalisation, implementation and use cases 249

a specifically designed language, guaranteeing that every
mutated form will consistently perform the intended task.
Consequently, the engine functioning is similar to the one of
a compiler. Yet, the peculiarity of this engine is that several
successive executions must result in strongly different
variants, thus introducing the concept of non-deterministic
compiler. In effect, to avoid behavioral detection, the mal-
ware must modify their functionalities and interaction
schemes at each execution. Before going any deeper in the
formalisation, we think that it is important to remind briefly
some important definitions, in particular to explain the nota-
tions that will be used along the article. Some of them can
be found in reference books about grammars and automa-
ton [15] or in the literature about attribute grammars [16, 17,
Lect. 15, p. 14].

Definition 1 A context-free grammar G is a quadruplet
<V, X, S, P> where:

— V is the finite set of non-terminal symbols also called
variables,

— X is the finite set or alphabet of terminal symbols forming
the language,

— § € V is the start symbol,

— P isthe set of production rules of the form V — {V U X }*.

Definition 2 An attribute grammar G 4 is a triplet <G, D,
E > where:

— G is originally a context-free grammar <V, X, S, P>,

— let Atrt = Syn W Inh be a set of attributes divided bet-
ween the synthesized and the inherited attributes, and
D = Ugyear Dy be the union of their sets of values,

— letatt : X € {VUX} —> att(X) € Art* be an attribute
assignment function,

— every production rule w € P of the form Yy, —, Y1, ...,
Y, determines a setof attributes Var, = U;¢qo,... nj{Yi.o |
o € att(Y;)} partitioned between inner variables: In, =
{Yo.a|la € att(Yo) N Syn} U{Y;.ali #0,a € att(Y;) N
Inh},
and outer variables: Out; = Vary\Iny,

— E is a set of semantic rules such as for any production
rule 7 € P, for each inner variable Y;.o € Iny, there is
exactly one rule of the form Y;.oo = f(Y1.a1, ..., Yy.0n)
where Yj.o € Outy and f: Dy X -+ X Dy, — Dg.

Context-free grammars can basically be evaluated by
pushdown automata. In compilation, these automata are used
for building the derivation tree according to the syntax of the
source. In the case of attribute grammars, a pushdown auto-
maton is still mandatory to parse the syntax but an additio-
nal attribute evaluator is required to evaluate the associated
semantic rules. The attribute evaluation may be solved by two

kinds of methods: topological sorting or recursive functions
[17, lect.18 pp. 3]. In this article, we will only consider the
topological sorting approach whose description is given just
after the definition of a pushdown automaton.

Definition 3 A pushdown automaton A is a seven-tuple
<0, %,T,6,qo, Zo, F> where:

— Qs the finite set of states,

— X is the alphabet of input symbols,

— T is the alphabet of stack symbols,

— 4§ isthe transition function of the form Q x {XUe} xI' —
0 x {I'Ue},

— go € Q is the initial state,

— Zp € I is the initial symbol on the stack,

— F C Q is the set of accepting states.

Definition 4 Algorithm for the attribute evaluation by topo-
logical sorting:

— Input: an attributed grammar G 4, a simple derivation
tree T of G4, and an initial valuation for the terminal
symbols v : Syny — D. Let Varr be the set of attri-
butes of T and E7 be its attribute equation system.

— Procedure:

I. LetVar := Varr\Syny.
II. While(Var # ¢) do
1. Choose x € Var such as x = f(x1,...
€ E;and Vi, x; &€ Var.
2. v(x) = f(v(xy), ..., v(xy)).
3. Var :=Var\{x}.

,xn)

Output: Solution v : Varyr — V.

We have now sufficient concepts to introduce a simplified
definition of a compiler as a basis for our work. We will use
the most uncluttered vision of a compiler without the inter-
vention of intermediate languages or optimization, leaving
only two steps: verification building the attributed derivation
tree and translation generating the executable code as shown
in Fig. 1.

Compiler

Source s : Executable
code Verification Translation codé

Fig. 1 Generic view of a simplified compiler. This is the simplest
decomposition of a compiler. Lexical analysis, the use of intermediate
languages and optimization techniques have been willingly ignored for
the sake of simplicity

@ Springer

250

G. Jacob et al.

Definition 5 A compiler Cis ais aquintuplet <Gy, I, Ag;,
Vg, Rr> where:

— Gs =<G,D,E> is the attribute grammar of the
source code, based on the context-free grammar
G=<V,%,8§, P>,

— T is the alphabet of instructions describing the targeted
machine,

— Agyg is the pushdown automaton used in the verification
process accepting the syntax of the source grammar G g
and producing the derivation tree 7',

— Vg, is the attribute evaluator based on topological sor-
ting used as a second step during the verification of the
derivation tree T,

— R7r C {(¥ x D)* x I'*}is arewriting system (also cal-
led semi-Thue system) translating the nodes of the form
(X x D) from the attributed derivation tree into execu-
table code over the instruction set I.

3.1 Functional polymorphism formalization

The required background about compiler theory being intro-
duced, we can now move to the new formalism. It is impor-
tant to keep in mind that functional metamorphism works at
a semantic level, just like compilers do. The final purpose
of each behavior, in other words its semantic interpretation,
must be expressed in a attribute grammar. An example is
addressed in the next part but right now the formalization
should be independent from the considered grammar. A beha-
vior can then be implemented in several ways corresponding
to the different possible semantically attributed derivation
trees.

The mutation approach will thus be slightly different from
compilation. A compiler, given a source code w in input veri-
fies firstits syntax. The automaton A, will accept the source
code if and only if $ (g0, w) € F. Given an initial attribute
valuation for terminals v, the evaluator Vi of the compiler
tries to build a complete valuation satisfying the equation
system. In case of success, the source code is then translated
according to the rewriting system R7: (@, v) = Ry @ With
' € I'*. Whereas, the purpose of the mutation engine is to
keep the original functionality through divers instantiation.
It will thus take in input a start symbol S from the behavior
grammar G. Instead of verification, the engine achieves a
derivation of the grammar: § >, @ with w € T*. In a
second step, this derivation tree is attributed by generation of
a new valuation satisfying the equation system of Gg. The
rest of the translation process is then identical. The main idea
is illustrated in Fig. 2. No additional verification is required
since by automated construction, the code is obviously syn-
tactically and semantically correct.

During derivation several derivation trees may syntacti-
cally be possible. Derivation will thus be embedded in a

@ Springer

Functional Polymorphic Engine

Behavior i : Executable
start symbol Derivation Translation — ol

Fig. 2 Generic view of a functional polymorphic engine. With regards
to the generic compiler, the main difference lies in the substitution of
the verification process by a derivation process

probabilistic automaton that will replace the deterministic
one used for verification. For a short example, let us define
the following grammar (on the left) and its associated deri-
vation probabilistic automaton (on the right):

<V> — XY|Z
<X> — a
<Y> — b|c
<Z> —d|e|f

With regards to semantic verification, the equation sys-
tem for attribute evaluation can hardly be modified without
loosing the grammar coherence. However, the initial valua-
tion for the terminals of the grammar leaves some degrees
of freedom (see Inputs in Definition 4). Several initial valua-
tions may satisfy the system of equations and the engine can
randomly chose between them. In Definition 4, a possible
algorithm is given for attribute generation. Based on a recur-
sive procedure, the algorithm explores the space of possible
solutions as a decision tree with backtracking facilities.

Definition 6 Recursive algorithm for the attribute generation:

— Input: an attributed grammar G 4, a simple derivation tree
T of G4 and an empty initial valuation v. Let Varr be
the set of attributes of 7 and E7 be its attribute equation
system.

— Procedure: recursive_generation

I. If Vary = ¢ do return true.

II. Choose x € Vary such as x has the minimum
dependency i.e. the minimal number of semantic
rules: min(card({wr|x € Vary})).

IIl. Varr := Varr\{x}.

IV. Solve the sub-system Er, of equations from Er
containing x, x is then reduced to a solution domain
D; C D,.

V. While(D; # 9) do
1. Choose randomly s € D;.

2. v(x):=s.
3. Call recursive_generation.
4. If false is returned do

Dy := Di\s.

Functional polymorphic engines: formalisation, implementation and use cases 251

5. Elsedo
Return true.
VI. Varr := Varr U{x}.
VII. Return false.

— Output: (Only if true is returned, otherwise no possible
valuation)
Solution v : Vary — V.

This algorithm solves independently the different subs-
systems of equations following the increasing dependency
(increasing number of semantic rules for a given attribute).
At each step, the set of possible values for this attribute is
reduced. If such a decision makes successive steps unfruit-
ful, the algorithm allows backtracking and explores a new
branch. In fact, the main drawback of this algorithm is that
it basically proceeds by brute-force. Some additional opti-
mizations could surely be found in addition to the choice
of minimum dependency. However, in the present case, the
probability of success in reasonable time is quite high. First,
because the set of values for attributes are bound spaces of
discrete values. Then, because the semantic equations often
remain quite basic: linear equations most of the time.

Generally speaking, attribute generation is critical since
attribute values are used for selecting the right rewriting rule
between the different associated to a same terminal. This
finally leads us to the following definition for a functional
polymorphic engine:

Definition 7 A functional polymorphic engine M is a quin-
tuplet <Gy, I, Ag,, Vg, Rr> where:

— Ggs =<G, D, E> is the attribute grammar of the source
code, based on the context-free grammar G =<V, X,
S, P>,

— [is the alphabet of instructions describing the targeted
machine,

— Ag; is the probabilistic finite automaton deriving the
start symbol S into simple syntactic derivation tree T
according to G,

— Vi, is the attribute generator determining a random ini-
tial valuation for the terminals satisfying the equation
system of T,

— R7 C{(¥ x D)* x I'*}is a rewriting system (also cal-
led semi-Thue system) translating the nodes of the form
(X x D) from the attributed derivation tree into execu-
table code over the instruction set I.

3.2 Characteristics of the mutation
3.2.1 Mutation entropy

The information entropy introduced by C.E. Shannon makes
it possible to measure the uncertainty associated with the

mutation process which is particularly interesting to assess
the engine effectiveness [18]. The mutation engine can be
modeled as a communication channel receiving data from
a source: the original description file from the hard drive,
and transmitting it to a recipient: the final executable built in
the process memory. During the transmission, some noise is
introduced by the engine through the mutations.

We have based our reasoning on an average case requiring
the definition of specific parameters:

— The average depth d of a grammar which is the average
number of production rules to apply during derivation
in order to reach the final word. It is equivalent to the
average number of intermediate states required by the
automaton before to reach an accepting one.

— The average number 7 of alternative options for a pro-
duction rule. It is equivalent to the average number of
successors for a given state of the automaton.

— The average number s of possible initial valuations given
a derivation tree 7. It is possible to bound this value
considering the best and worst cases. With regards to
entropy, the worst case is reached when the attribute
equation system accepts a single initial valuation as solu-
tion. On the other hand, the best case is reached when all
the attributes of the terminal symbols from the tree T are
independent. Using the notations from the definitions,
then the initial value of an attribute ¢ € syny can be any
value from the domain Dy, . This can be summed up by the
followinginequality: 1 < s < Igevarpnsynycard(Dy).

There are two points over the channel where some uncer-
tainty is created: the random derivation and the choice of the
attribute valuation. This leads us to the following proposition:

Proposition 1 By considering uniformly distributed random
choices, the average entropy is given by: H(mutation) =
d x log,(n) + log, (s).

Proof Let us begin by calculating the probability associated
to the syntactic derivation of a word @ which is obtained by
the path of state 7., = e, .. ., e4. Considering a probabilistic
automaton, the probability of selecting a given state among
the possible successors is only dependent of the current one
like in a first-order Markovian process:

P(w) = P(eo)TI{_ P(eilej—1)
The starting state e(is mandatory which gives us:
P(eg) =1

By reasoning on an average basis, we know that for any w
derived from G, d states are reached. At each step, n options
are available:

@ Springer

252

G. Jacob et al.

P(eiy1le) =

1
Ploy= (2)

Given the derivation w, the engine chose randomly a possible
initial valuation v with equivalent probability

Q.:|,_‘

1
P(v|lw) = -
S
Which leads us to this result:
1
P(w,v) = P(w)P(v|w) = —
sn

By a similar reasoning we can calculate the average number
of possible attributed derivation trees:

card(L(G)) = sn’
The entropy of the derivation is thus given by:

H (mutation) = —X (4, »eLG) P (@, v) log, (P (w, v))

—card(L(G)) P(w, v) log, (P (w, v))

() (o= ()

= d(logy(n)) + log, (s)

m}

This result is based on specific hypothesises but it gives, if
not precise, a pertinent assessment of the mutation effective-
ness. It may be interesting to interpret it. In fact, d and n are
syntactic factors settled by the behavior grammar. This gram-
mar is designed to convey the minimal expression of the final
functionality with the best coverage. Consequently, it cannot
be the subject of easy modifications. The semantic factor s
remains the main degree of liberty and enables a logarithmic
increase of the mutation entropy. Several semantic parame-
ters can impact the value of s: the number of attributes for
each symbol, the range of their possible values, and the num-
ber of dependencies between them. This statement is quite
important since the number of equivalent rewriting rules for
a terminal symbol is directly proportional to the possible
values taken by its attributes. This underlines the fact that
functional polymorphism goes beyond the simple syntactic
level.

3.2.2 Detection complexity

If mutation entropy was interesting from the perspective of
the attacker, detection complexity proves more relevant from
the defender’s perspective. Let us now focus on the com-
plexity of the behavioral detection problem for functional
polymorphic malware of finite size. Considering actual beha-
vioral detectors, most of them rely on predefined behavior
signatures. According to previous works, these signatures

@ Springer

may be expressed as Boolean formula [14,19]. Behavioral
detectors can be divided into two classes: dynamic
simulation-based detectors relying on sequences of obser-
vable events (system call traces) and static formal verifier
relying on instruction meta-structures (graphs, temporal logic
formula) [1]. Considering an observable event i (resp. an ins-
truction) and a position j in the sequence (resp. the structure),
let us define a Boolean variable:

1 if i is present at the position j

X; ;= s
b 0 otherwise

These Boolean variables are combined into a formula
representing the whole sequence or meta-structure. Some
events (resp. instructions) may be interchangeable at a given
position. A sequence (resp. a structure) is then a Boolean
formula in its conjunctive normal form (CNF):

Xsk =X 1A (Xiz’z\/Xié’z\/-'-)/\---/\(xin’” V...

A given behavior can finally be instantiated through various
equivalent sequences (resp. structures). A behavior 8 is thus
modelled by a disjunction of formulae:

X=X NXyy Ao N X,

The global behavioral detection scheme is given by a Boo-
lean correlation function ¢. over the v different behaviors
referenced in the database:

Bym = ¢dc(Xgy, ..., Xp,)

According to this modelling, following an similar rea-
soning approach to the one used by D. Spinellis to study
the impact of syntactic polymorphism on signature detec-
tion [12], we can likewise reduce the behavioral detection
problem to a satisfiability problem:

Proposition 2 The behavioral detection of functional poly-
morphic malware with finite size is NP-complete.

Proof Let D be a behavioral detector and let us assume that
it can reliably determine in P-time whether a program exhibit
or not a mutated form of a given behavior B. We will now
use D for determining the satisfiability of N-terms Boolean
formulae.

We know from this section that a behavior can be described
by its signature: a Boolean formula S. Using S, we can create
a virus archetype A as a triple (f, s, ¢) where:

—c is an evolving integer used to generate a new interpreta-
tion of the formula S,

—s is a Boolean value indicating if S has been satisfied,

—f is the duplication function. f simulates the functional
polymorphism by computing a new value for ¢, which indi-
rectly creates a new interpretation for S. f finally updates s
using the new interpretation.

For D to detect whether a given virus is a mutated version of a
known functional polymorphic strain, it must then determine

Functional polymorphic engines: formalisation, implementation and use cases 253
Fig. 3 Duplication description. (i) <Duplication> = <Creation><Opening><Reading><Writing>
BaSIC_aHy’ duplication consists in | <Opening><Reading><Creation><Writing>
copying tl}e code from the | <Opening><Creation><Interleaved RW >
running virus ,(th”) mnto a | <Creation><Opening><Interleaved RW >
perr}qanent objecF newly crea.ted | <Opening><DirectTransfer>
(obj_perm). ThI.S grammar 1s (it) <Creation> = create obj_perm;
an extendeq version of the one (ii1) <Opening> .= open this;
lnt.roduced in the previous (iv) <Reading> = receive wvar «+ this;
article [21] (v) <Writing> = send wvar — obj_perm,;
(vi) <InterleavedRW > ::= while(receive wvar «— this;)then{
send wvar — obj_perm;
}
(vit) <DirectTransfer> ::= send this — obj_perm;
if S will ever be satisfied. In the case of functional polymor- Semantic ey
phic engines, we have seen that S is a disjunction of CNF for- e B oansicalll St
mulae modelling the sequences of events or meta-structures g, syucture J' X,.'fe J Exocutable Code
of instructions. The detector D should then be able to solve s | ||[Behavior N e Code 00011010
.. . it Expanser || by —* Bui H—e
the SAT problem for at least one clause of the disjunction. By = Dt caBulde (/AN . e
i

reduction, the detection problem is equivalent to solving the
SAT problem which has been proven NP-complete [20]. O

4 Implementation aspects

Like we have already stated, any attempt of semantic mani-
pulation requires a high-level description language conveyed
by a grammar. This language expresses an equivalence in
terms of purpose between two functionalities deriving from
a same start symbol, meaning that every mutated form will
consistently perform the intended task. In the context of this
paper, we have chosen to use the grammars introduced in
a previous article to model the main malicious behaviors
through their final purpose [21]. The adopted perspective
is object-oriented: the malware embed internal mechanisms
and attributes but also provide external interfaces for interac-
tion with adversaries. These adversaries are classified accor-
ding to their use in malware’s lifecycle: auto-reference,
permanent objects, communicating objects or boot objects.
A behavior description can be seen in Fig. 3, as an example.
Anyhow, the same reasoning could be applied without loss
of generosity, to any other behavioral model possibly descri-
bed by a language: general behavior patterns from VIDES
[22], high-level actions from GateKeeper [23], etc. Let us
now introduce how a functional mutation engine can be built
in practice.

4.1 Prototype architecture and results

As stated in the formalization, the functional polymorphism
engine is divided between two components respectively res-
ponsible for the derivation and the translation. Each of these
components is then divided between different modules brie-
fly described below. The overall architecture of the proto-

Derivation Translation

Fig. 4 Architecture of the prototype. This schematic description of the
architecture reveals the junctions between the different modules of the
prototype

type and the junction of the different modules is illustrated
in Fig. 4.

Behavior expanser: The behavior expanser is part of the
derivation component. This module embeds the syntactic
rules of the behavior language inside a probabilistic auto-
maton in order to build a random derivation tree. During
derivation, it calls on the semantic generator services to
annotate the tree.

Semantic generator: This generator is responsible for crea-
ting the semantic attributes associated to the different
production rules. It embeds the semantic equations to
guarantee the coherence of the valuation.

Code builder: The code builder is the entry point of the
translation component. This module reads the derivation
tree and its semantic annotations in order to build the
corresponding executable code. It uses the basic building
blocks supplied by the instruction set in order to build the
malware body and updates these blocks according to the
semantic attributes.

Instruction set: The instruction set defines the meta-
structures of instructions corresponding to the basic
operations: arithmetic ones for example but also more
complex operations like the parameter passing of system
calls.

The prototype has been implemented in C and the basic buil-
ding blocks are directly written in assembly. It is now ope-
rational and currently supports four different behaviors used

@ Springer

254

G. Jacob et al.

GetModuleFileName fopen GetModuleFileName
"kernel32.d11" "msvcrt.dll" "kernel32.d11"
CreateFile GetModuleFileName CopyFile
"kernel32.d411" "kernel32.d11" "kernel32.d11"

CreateFile fopen
"kernel32.d11" "msvert.dll"
ReadFile fseek
"kernel32.d11" "msvert.dll"
WriteFile ftell
"kernel32.d11" "msvert.dll"
ReadFile frewind
"kernel32.d11" "msvert.dll"
WriteFile malloc
"kernel32.d11" "msvert.dll"
ReadFile fread
"kernel32.411" "msvert.dll"
furite
"msvert.dll"
ReadFile
"kernel32.d11"
WriteFile

"kernel32.411"

Fig. 5 Execution traces. This figure collects the different dll function
calls made over three consecutive executions. These are just extracts
relative to the duplication behavior (interleaved read/write on the left,
one block reading and writing in the middle, direct transfer on the right).
This is typically the kind of information collected by an antivirus pro-
duct for behavioral detection

in P2P/Mail worms: duplication, propagation, residency and
overinfection test. The global size of the code is about 40 KB
and uses less than 30 basic building blocks (from 4 to 80 bytes
in size). From this, the engine is able to build thousands of
basic derivations only by modifying the syntax and the types
of the semantic objects (registry key, file, socket, etc.), and
even more if we consider the differences in terms of object
location or attributes as we will see a little bit further. To give
you an hint of the result, Fig. 5 gathers three traces relative
to duplication in three consecutive executions of the engine.

Going back to the formalization part, there are basically
two degrees of liberty in the mutation. One lies in the different
possible derivations from a start symbol. The other one lies in
the generation of semantic attributes that will determine the
rewriting rule to use. The behavior expanser and the semantic
generator are thus the real core of the engine more than the
code builder itself. The two next parts makes explicit their
technical details.

4.2 Syntactic behavior expansion

The first level of mutation is achieved by a random derivation
of the grammar performed by the behavior expanser which
replaces the usual parser used for verification. The structure
of its source code is quite similar to the one of a grammar par-
ser. However, instead of choosing the following production
rules according to the current symbol under the parsing head,
the expanser unrolls the production rules choosing randomly
between the different options at each step. From a start sym-
bol, the expanser generates a valid derivation tree inside the

@ Springer

int DuplicationExpand(...){

int uiWhich=RandomGenerator(5);

switch(uiWhich){

case 1:
CreationExpand(...
OpeningExpand(...);
ReadingExpand(...)
WritingExpand(.
break;

case 2:
OpeningExpand(...);

)
)3

3

case 5:
OpeningExpand(...);
TransferExpand(...);
break;

b

Fig. 6 Derivation functions. This short code sample illustrates the
inclusive call sequences. Contrary to common parsers, the following
step is not determined by the current syntactic unit but randomly chosen

<Overinfection>

<marker= "marker_name”\ >
<\ Overinfection>
<Duplication>

<target= "target_name”\ >
< \ Duplication>
<Residency >
<\ Residency>
<Propagation>

<carrier= ”lure_.name”\ >
< \ Propagation>
<Payload>
<\ Payload>

Fig. 7 Global structure of a P2P/mail worm. This file, written in a
format similar to XML, describes the global structure of the worm.
Using dedicated tags, it is possible to specify certain parameters of the
behaviors, such as the name of the duplicated instance for example

possibility space. A simplified sample from the source code
is shown in Fig. 6 in direct relation with the grammar given
in Fig. 3. Notice that the non-determinism of the derivation
automaton does not lift the deterministic constraints on the
grammiar, it still requires to be LL(k) or LR(k) to build the
executable code.

In input, the derivation process must be fed with a global
description of the malware. The purpose of this description is
to determine the articulation of the different behaviors inside
the malware body. The start symbols of the behavior gram-
mars are used as basic blocks to build a description in a
format similar to XML. An example of a generic P2P/mail
worm is provided in Fig. 7 with additional tags to customize
the behaviors. The resulting output from the expanser will be
a syntactic derivation tree satisfying the behavior grammar.

4.3 Code generation according to semantic

The second level of mutation is achieved by the semantic
generator through the generation of semantic attributes satis-

Functional polymorphic engines: formalisation, implementation and use cases 255

Fig. 8 Duplication attributed (i)
description. Semantic rules have

been added for the binding of

variables and objects as well as

typing

= <Creation><Opening><Reading><Writing>
| <Opening><Reading><Creation><Writing>
| <Opening><Creation><Interleaved RW >
| <Creation><Opening><Interleaved RW >
| <Opening><DirectTransfer>
{ <Writing>.objld=<Creation>.objld
<Writing>.objType=<Creation>.objType
<Writing>.varld=< Reading>.varld
<Interleaved RW >.objld=<Creation>.objld
<Interleaved RW >.objType=<Creation>.objType }
(it) <Creation> 1= create obj_perm,;
{ <Creation>.objld=o0bj_perm.objld
<C'reation>.objType=obj_perm.objType }
(i19) <Opening> = open this;
(iv) <Reading> 1= receive wvar « this;
{ <Reading>.varld=var.varld }
(v) <Writing> = send wvar — objperm;
{ <Writing>.varld=var.varld
<Writing>.objld=o0bj_perm.objld
<Writing>.objType=obj_perm.objType }
(vi) <InterleavedRW> ::= while(receive var <« this;)then{
send wvar — obj_perm;
}
{ vary.varld=vars.varld
<Interleaved RW >.objld=0bj_perm.objld
<Interleaved RW >.objType=obj_perm.objType }
(vit) <DirectTransfer> ::= send this — obj_perm;

< Duplication>

fying the attribute equation system. These annotations are
particularly important since they will determined the rewri-
ting rules to use for a given terminal symbol. The example
from Fig. 3 has been rewritten using attribute equations in
Fig. 8. These attribute equations are used for several
purposes:

Object binding: The first step of the attribute evaluation is
performed by binding the semantic objects. This mecha-
nism identifies the different instances of objects and
variables and guarantees they are coherently used. Object
binding is basically used to constrain the data flow bet-
ween objects. Let us consider the duplication example of
Fig. 8. Object binding is done by affecting an attribute
identifier (objId) to the permanent object and verifying
that it is this same object that we open and then write to.
This binding is not subject to mutation since it is constrai-
ned by our behavior grammar.

Object typing: The second step in the annotation process is
performed by associating types to the different objects.
In fact, it is type information that determines the rewri-
ting rule to use. It is easy to understand that we dispose
of several primitives to traduce a given grammar unit. If
we take for example the command create obj_perm,
it can be performed by several system calls depending on
whether the object is a file or a registry key. It can easily
be seen that object typing impact greatly the interaction
scheme. By affecting a type to an object (0bjType), we

struct obj_entry{
unsigned long ulldentifier;
unsigned long pObjectHandle;
char pcName[MAX_PATH];
char pcLocation[MAX_PATH];
unsigned int uiType;
char pcAccess[4];
unsigned long ulAttribute;

IS

Fig. 9 Object semantic structure. This structure is used in the proto-
type to store the different semantic annotation generated to build the
executable code

reduce the set of possible translation rules to a singleton.
In our polymorphic context, this affectation must be
performed randomly between a range of coherent values.

Object characterization: This last step, absent in simple
compilation, has been specifically added. Characteriza-
tion randomly affects additional characteristics to object.
These characteristics stored in object structures like the
one described in Fig. 9 are then used as parameters for
the built instructions:

— Access characterization which constrain the stream
flow: unilateral or bilateral. It is particularly impor-
tant in cases like the autoreference since running pro-
grams can only be accessed in reading mode.

— Localisation which determines the location of objects.
It can be a simple path for a file or a subtree for regis-
try keys.

@ Springer

256

G. Jacob et al.

— Attributes which define basic properties of the object.
Once again, a file, for example, can be hidden, com-
pressed, ciphered or associated to the system accor-
ding to the facilities offered by the file system.

When launching the application, after performing the deri-
vation, the generated code is built in a newly allocated
memory space with execution rights. Building dynamically
the code introduces addressing problem to replace the lin-
king process. In order to build relocatable code, all variables
and objects as well as the import table are managed by the
code builder in structures similar to the one in Fig. 9. Conse-
quently, the generated code is able to address them directly
through their handle without localization problem.

5 Use case for antivirus products assessment

Assessing antivirus products is still an open problem and
few works have been led on the subject. Up until now, most
test procedures simply confront malware detectors to known
strains thereby solely assessing the coverage of their signa-
ture database. However, finding a procedure to assess the
detection of unknown malware is far more complex. Fortu-
nately, functional mutations could be used in the context of
blackbox tests to address this issue and more particularly to
assess the coverage of behavioral detection engines. A first
methodology had been introduced in a previous article based
on the manual simulation of functional modifications [14].
The idea was similar: achieve the same behavior through
different instantiations. Unfortunately, the process was not
wholly automated, requiring the manual generation of the
new variants which finally proved quite prohibiting. The defi-
nition of an autonomous engine for functional mutations has
allowed us to revise the process to make it fully automated.

5.1 Methodology

Typically, functional polymorphism engines convey a gene-
ric semantic model and translate it towards a specific ins-
tantiation (refinement procedure). Within the perspective of
detection, this principle is reversed: the detector analyzes a
given instantiation, interprets it, and compares it to a generic
model. Unfortunately, severe problems of completeness and
accuracy are often observed. By adopting the attacker’s point
of view, it proves easier to automatically enumerate signifi-
cant variants of an original strain. As a consequence, func-
tional polymorphic engines may be valuable tools to assess
the coverage of behavioral detectors just like simple meta-
morphic mutations can be used for assessing the resilience
of signature-based detection [24].

One could object that it may be very easy to establish
a signature for the invariant core of our engine. However,

@ Springer

Host
oS

Fake SMTP
ap A server

[omvins |

Mail Client

P2P Client | services |

| FAI Account |

Fig. 10 Test platform. This figure pictures the different elements and
services running on the platform, either on the host machine or inside
the guest operating system

this engine has not been developed to become an opera-
tional viable attack. This prototype has been implemented
for research and testing purposes. Besides, the absence of
signature is a prerequisite of the test procedure, otherwise
form-based detection would hinder the evaluation by detec-
ting preemtively the engine before any action of the behavio-
ral detector.

5.2 Test platform

The first step was to develop the prototype and, using
on-demand scan, to make sure that no syntactic signature
existed for it. A platform was then required to observe the
execution of a piece of malware in an environment protected
by the antivirus product to be tested. For this, we have cho-
sen to use a virtual machine, mainly for two reasons: the first
is to prevent any infection of the real machine to occur, and
the second is the capability to reset the platform in a clean
state in case the malware variants are not detected. The glo-
bal architecture of the test platform is described in Fig. 10
and additional information are given below:

Guest machine: Qemu [25] has been used for the emula-
tion of the virtual environment. Windows XP SP2 has
then been installed and configured as a personal compu-
ter: additional services usually hijacked by malware have
been installed such as a mail client and a peer-to-peer
client. In addition, an ISP account has been configured
with different account information like the associated
SMTP server for example. Once the installation achie-
ved, the disk image has been duplicated into clean copies,
to receive the different antivirus products and the virus
itself (without running it yet). From there, the tests sim-
ply consist in executing several times the engine in the
virtual machine, the machine running in snapshot mode
to restart it after each infection.

Host machine: A tap has been installed between the host
machine and the guest machine in order to establish a

Functional polymorphic engines: formalisation, implementation and use cases 257

virtual network communication between them. In paral-
lel of the guest machine, a fake SMTP server was running
on the host, listening on port 25, dumping the received
SMTP packets and responding with the correct acknow-
ledgements. The host file of guest OS had been previously
rewritten in order to route all the traffic of the different
servers toward the tap.

5.3 Evaluation deployment

The test platform is fully operational and has been deployed
to assess different antivirus products whose results are given
below (Sects. 5.3.1 to 5.3.4). Four products have been selec-
ted, integrating different levels and techniques of behavioral
detection (behavioral blockers, heuristic, state automata [1]).
Please keep in mind that the results are not given for a survey
of the antivirus market but only to validate our procedure.

5.3.1 DrWeb results

According to the results shown in Table 1, no monitoring of
the actions taken by the malware must be done in this version
of DrWeb. However the editor announced a few months ago,
the release of a new engine in addition to traditional signa-
ture scan and heuristic analysis: Origins Tracing” ¥ which is
specifically designed to detect unknown malware. No more
information is given on its functioning, we can only assume
it is not based on behavioral models because the behaviors
embedded in our mutation engine are inspired from common
malware and are thus basically well known by analysts. It
is simply the way they are deployed and combined which
differs. If behavioral detection was integrated, some instan-
tiations of standard behaviors among the hundreds of execu-
tions should at least have been recognized.

5.3.2 NOD32 results

According to the results shown in Table 2, NOD32 seems
to use heuristics for behavior monitoring as the labels of the
detected variants suggest. Crossing the results, these variants
are all detected through their attempts to replicate: the target

Table 1 Detection results for DrWeb. Software version: DrWeb(R)
Virus-Finding Engine—drweb32.dll (4,44,0,09176)/SpIDer Guard
Service—Spidernt.exe (4,44,4,09260)/SpIDer Mail (R) for Windows—
spidermail.exe (4,44,1,12220)/Signature base: 14.01.2008/283790
entries

DrWeb Anti-virus for Windows 4.44 (2008); Editor: Doctor Web, Ltd.

Number of Detection rate (%): Detection rate (%):
executions resident protection mail protection
500 0 (0%) 0 (0%)

Table 2 Detection results for NOD32: threat sense early warning sys-
tem, protection from potentially unwanted application and resident
protection activated; signature database: 2740(20071221)/Antivirus
and Antispam scanner module: 1001(20071221)/Advanced heuristic
module: 1068(20071119)

NOD32 Anti-virus 3.0.621.0 (2008); Editor: ESET

Number of Detection rate (%): real-time file system
executions protection
500 71 probably unknown new Heur_PE virus (14%)

of the duplication cause the detection as written down in the
log. If we look closer at these variants, the only common point
they share is that they derive from the <DirectTransfer>
rule from duplication (see Sect. 4.3, Fig. 8). This particu-
lar derivation is translated using the system call CopyFile
in order to copy the malicious code. On the other hand, the
other duplication attempts using the standard ReadFile and
WriteFile primitives are not detected. This interpretation does
not seem inconsistent with our result: on average 20% of the
variants should be derived from the <DirectTransfer>
rules and 14% were detected in practice, independently from
the location of the target. With a greater number of tests we
should come closer to the theoretical probability but still the
observed gap is not too consequential.

5.3.3 Product A results !

Product A, whose results are given in Table 3, combines two
different methods of behavioral detection: behavioral blo-
cking for registry monitoring and global activity monitoring.
Behavioral blocking is preemptive and thus the first engine to
detect the different variants. The tests have resulted in 27%
of detection which, after verification, covers all the variants
making themselves resident through the run registry key. This
detection rate is consistent with the probability of one in three
to choose this method of residency. If all attempts have been
detected, however, no correlation is done and the final deci-
sion is left to the user. To follow the process, we have by
default accepted the operation in order to keep on with the
detection.

The second detection pass relies on activity monitoring
and seems independent from the behavioral blockers and its
decisions. The monitoring engine correlates a certain number
of actions (file creations, file or registry modifications, etc.)
to support its decision. Two generic threats are detected but
with a relatively low rate according to the results of Table 3:
generic P2P Worms and generic Trojans with about 10%

! Product has been anonymized because the terms concerning blackbox
evaluation in the licence contract were unclear. The product is not to be
used in automatic, semi-automatic or manual tools designed to create
virus signatures, or virus detectors.

@ Springer

258

G. Jacob et al.

Table 3 Detection results for Product A

Product A (2008); Editor: X

Number of executions Non-labelled Generic P2PWorm?* Generic Trojan® Total

500 Blocking run registering 98 (19.6%) 11 (2.2%) 26 (5.2%) 135 (27%)
Non-blocked 300 (60%) 42 (8.4%) 23 (4.6%) 365 (73%)
Total 398 (79.6%) 53 (10.6%) 49 (9.8%) 500 (100%)

4 Attempting to copy towards a network resource
b Registering its copy on the system

Table 4 Detection results for Product B
Product B (2008): Editor: X

Monitored behaviors

Ba = “copy an executable file to a sensitive area”

Bp ="“copy to an area of your computer that shares files with others”
Bm = “connect Internet in a suspicious manner to send out mail”

1 ="‘copy to multiple locations”

Br = “attempt to register itself in your Windows system startup”

Number of Detected Detection rate

executions behaviors

500 {} 44 (8.8%)
{Bm} 80 (16%)
{Ba. Bi} 16 (3.2%)
{Bp. Bi} 140 (28%)
{Bm. B} 16 (3.2%)
{Bm, Br} 32 (6.4%)
{Ba, By Bi} 68 (13.6%)
{Ba. Bm. Bi} 20 (4%)
{Bp, Bi, Br} 48 (9.6%)
{Ba. Bp, Bi, Br} 28 (5.6%)
{Bas Bm> B> Br} 8 (1.6%)

each. No common patterns could be found to help unders-
tanding the detection support. In addition, contrary to P2P
shared directories, no monitoring seems to be deployed on
mail activity in order to detect its suspicious use for propa-
gation (in particular for those labelled as Trojans).

5.3.4 Product B results !

Product B also relies on action monitoring but contrary to
product A which searches for a global generic behavior (P2P
Worms, Viruses, Trojans, etc.), product B looks for individual
fine-grained suspicious behaviors as described in Table 4.
For each detected behavior, the user is warned and asked
for a decision: by default we have accepted all operations in
order to continue the detection process (for this reason, the
results have been gathered according to the different behavior

@ Springer

combinations). At first glance, the results are quite promising
with an excellent coverage. Only duplication seems to be
problematic (28, 0% of detection for S; whereas it is present
in 100% of the variants). This can be explained by the fact that
only sensitive areas are monitored, that is to say the system
directories. A second explanation, which is also valid for
propagation through P2P shared directories, is that standard
C primitives, different from the Windows standard ones, can
be used in order to bypass the engine. On the other hand,
every attempt to propagate through mail has been detected
without exception. With regards to residency, all attempts to
register through a run registry key have also been detected
but none of the other techniques.

This product offers the best coverage even if the ideal
case would be the detection of the four behaviors at every
execution (Mail variants: {84, B, Bi, Br} and P2P variants:
{Ba, Bp, Bi, Br}). Some additional tests, run in the next sec-
tion, will be interesting to check that these good results do
not result in an exacerbated false positive rate. In practice,
no correlation is done between these behaviors which would
help to identify generic threats in case of repeated erroneous
decisions from the user.

5.4 Global evolution in behavioral detection

Through the tested products, we were partially satisfied to
notice an evolution from our first evaluation two years ago
[14]. According to these previous tests, we had come to the
conclusion that either behavioral detection was unused by
antivirus products or behavioral detection was severely hin-
dered by its correlation with signature-based detection. This
situation no longer seems to be in practice and the tests have
shown areal deployment of behavioral detection even if some
progress remains to be achieved with regards to the behavio-
ral signatures and models.

Another global observation put forward by this test proce-
dure is the diversity in the techniques of behavioral detection
chosen from an editor to another. No single detection solu-
tion has really superseded the others. This observation is also
relevant with regards to the behavioral models: according to

Functional polymorphic engines: formalisation, implementation and use cases 259

the products, the behavioral models can be global ones with
generic classes of malware or fine-grained with individual
behavior descriptions (duplication, residency, mail propaga-
tion, P2P propagation). This can be explained by the fact that
behavioral detection is still a recent and active research field
producing new results every year.

Globally, finer-grained behavior models exhibit the best
results, however like we said previously, these results must
be crossed with the resulting false positive rates. In a second
step of the procedure, we have confronted these same four
products to different programs whose activity could raise
some suspicions. A list of these programs as well as the
obtained results are gathered in Table 5. A first observa-
tion is that individual behavior models suffer from greater
rates of false positives (Bfp,, Brpss Bsps) as a drawback for
their good detection rate. To cope with these false positives,
the product B seems to use white-listing as a solution for
known legitimate programs (8 yp,). Notice that this white-
list is established according to the executable names, which

Table 5 Assessment of the false positive rates. See Tables 1, 2, 3 and
4 for the product references

Program Context DrWeb NOD32 Prod. A Prod. B
Explorer Run Brm
Patch DNS Install
(KB945553)
AV product Install Brpa:Brps Brps
Office XP Install

Run
Telnet Run Brps
mIRC Install

Run Brrs
Skype Install

Run
FtpExpert3 Install

Run
KaZaA Install Bips Brp Brpr

Run
False positives
Brp, = “attempting execution of instructions from

an unauthorized area”(launching executables
from the explorer in miniature view)

B rp, = “suspicious driver installation to get overall access
to the system”

Brps = “invader attempting to insert in winlogon”

Brps = “modify the way your computer communicate
with the Internet”

Brps = “some useful ports are completely blocked (ex. SMTP 25)”

Brpe = “potentially unwanted application that may exhibit malware
characteristics, mirc.exe: known as not a virus”

B fp, = “alerts concerning various Spyware and Adware”

can obviously be easily bypassed. With regards to the other
products using global behavioral models, the number of false
positives is almost null and the raised alerts are no real false
positives. First because KaZaA is well known to contain an
incalculable number of bundled Spyware and Adware (8 7p,).
Then, because during the installation of antiviral products,
the monitoring techniques which are deployed, are identi-
cal to the hooking and stealth techniques used in malware
(Bfpss Brpss Brps)- We think that, the main point with global
approaches, in addition to their low detection rates, would be
some naive policies which proves too generic in application:
radically blocking SMTP port is a trivial example (8 rps).

6 Use case in software protection

It is not really surprising that, the techniques for software
protection and the techniques used in malware to mutate and
thwart analysis, are strongly linked. The purpose is basically
the same. Malware creators often use these techniques to slow
down the analysis process which is led by experts in order to
extract a signature or information to identify the attack. The
only difference lies in the time available to analyze the code
between a hacker and an expert overwhelmed by thousands of
variants. We think that functional polymorphic engines pro-
vide interesting features with respect to software protection:

Static analysis: The control flow graph of the effective code
is only written during execution. The control flow directly
depends on the randomly chosen annotated derivation
tree. This means that even if a hacker use an emulator to
collect the generated code, he will only collect a single
version among several equivalent variants. Besides, this
building respects an important principle in anti-tampering
protection that is the dependence between the control
flow and the data flow [26]. Here the code structure and
control directly depends on random data generated during
derivation. Trying to address the analysis of the engine
itself, the hacker will be confronted to an important
amount of alternative execution paths in the derivation
and translation modules. The number of branching
is actually proportional to the entropy calculated in
Sect. 3.2.

Dynamic analysis: Once again, the code is only written
during execution and it weights heavily on dynamic ana-
lysis in particular with regards to breakpoints. Indepen-
dently from the execution level of the debugger (ring 0 or
ring 3), the hacker does not know exactly where the code
will be built in memory until the allocation. Moreover,
the code will be different from an execution to an other,
meaning that the predicted location of the breakpoint is
likely to be at the wrong address, possibly unaligned with
the assembly code.

@ Springer

260

G. Jacob et al.

Limitations: The main drawback from these engines is that
they introduce an original overload explained by the code
building. Consequently, functional polymorphic genera-
tion should be restricted to limited critical portions of
code, but sufficiently important to offer enough possible
variations. In addition, just like any other anti-tampering
technique, these engines exhibit some weaknesses. The
security of the scheme relies on the difficulty to esta-
blish a correspondence between the original point of the
derivation (the start symbol) and the purpose of the gene-
rated code. This correspondence is hard to tell because of
the numerous intermediate functions implicated in deri-
vation, but it could be found more easily using forced
branching instead of random branching during deriva-
tion. But using a combination of different anti-tampering
techniques, they can consolidate each other. In particu-
lar, dynamic integrity checking [27] and anti-debug tech-
niques could thwart forced branching. The implications
of functional polymorphic engines in software protection
have been briefly described here to argue their potential
uses but they should be explored in greater details.

7 Conclusion
7.1 Contribution and ethical considerations

In this paper, we have introduced the new concept of
automated functional mutations from both the theoretical
perspective and the operational perspective. The functional
polymorphism engines are simply the automation of what
most malware writers actually do: to take a known strain
and slightly modify their functionalities to avoid detection.
We did not intend to make their task easier. The fact is
that we were more interested in the possible applications
for security researchers and experts. In particular, we have
put forward two possible use cases: for behavioral detectors
assessment by simulation of unknown malware using known
techniques and for software protection by dynamic gene-
ration of variable code. In practice, an important amount of
work remains before offensive malware can be obtained from
our engine. We have only a limited set of the most common
behaviors at our disposal (no complex payload for example),
and these behaviors are all based on existing malicious tech-
niques meaning that they remain detectable. In addition, the
engine itself could easily be detected by signature just like
decryption routines in polymorphism.

7.2 Perspectives and solutions
The perspective is now to make the engine richer with addi-

tional behaviors but also to increase the number of possible
derivations with new semantic attributes. These enhance-

@ Springer

ments should result in a greater completeness of our test pro-
cedure for behavioral detectors. On the opposite, detection
should also benefit from this work. Basically, functional poly-
morphism engines and behavioral detectors have an inverse
functioning: a mutation engine implements an abstract model
into binary code for execution whereas the detector translates
execution information into an abstract description for com-
parison to a model. Therefore, a translation mechanism could
prove useful to generate new behavioral signatures with a bet-
ter coverage than the one used in the tested products. Current
works are in progress in order to develop such an analyzer
based on behavioral grammars.

Acknowledgments This work has been partially supported by the
European Commissions through project FP7-ICT-216026-WOMBAT
funded by the 7th framework program. The opinions expressed in this
paper are those of the authors and do not necessarily reflect the views
of the European Commission.

References

1. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware:
from a survey towards an established taxonomy (WTCV’07 special
issue). J. Comput. Virol. 4(3) (2008)

2. Fortinet Observatory. http://www.fortinet.com/FortiGuardCenter/

3. Virus Construction Tools From viruslist.com. http://www.viruslist.
com/en/virusesdescribed?chapter=153318618

4. Vx heaven: virus creation tools repository. http://vx.netlux.org/vx.
php?id=tidx

5. Wagner, D., Soto, P.: Mimicry attacks on host based intrusion detec-
tion systems. In: Proceedings of the 9th ACM Conference on Com-
puter and Communications Security (2002)

6. Gao, M.K.R.D., Song, D.: On gray-box program tracking for ano-
maly detection. In: Proceedings of the 13th USENIX Security Sym-
posium, pp. 103—118 (2004)

7. Driller, T.M.: Metamorphism in practice, 29A E-zine, vol. 6 (2002)

8. Filiol, E.: Techniques Virales Avancées. Springer, IRIS Collection,
ISBN: 2-287-33887-8 (2007)

9. Szor, P.: The Art of Computer Virus Research and Defense.
Addison-Wesley, Reading, ISBN:0-321-30454-3 (2005)

10. Beaucamps, P.: Advanced polymorphic techniques. Int. J. Comput.
Sci. 2(3), 194-205 (2007)

11. Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. In: Proceedings of the International Conference on Com-
putational Intelligence (ICCI), Published in Int. J. Comput. Sci.
2(1) 70-75 (2007)

12. Spinellis, D.: Reliable identification of boundedlength viruses is
np-complete. IEEE Trans. Inf. Theory 49(1), 280-284 (2003)

13. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantic-
based approach to malware detection. In: Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (2007)

14. Filiol, E., Jacob, G., Liard, M.L.: Evaluation methodology and
theoretical model for antiviral behavioural detection strategies
(WTCV’06 special issue). J. Comput. Virol. 3 (1) 23-37 (2007)

15. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata
Theory, Languages and Computation, 2nd edn. Addison Wesley,
New York, ISBN:0-201-44124-1 (1995)

16. Knuth, D.E.: Semantics of context-free grammars. Theory Comput.
Syst. 2(2), 127-145 (1968)

http://www.fortinet.com/FortiGuardCenter/
http://www.viruslist.com/en/virusesdescribed?chapter=153318618
http://www.viruslist.com/en/virusesdescribed?chapter=153318618
http://vx.netlux.org/vx.php?id=tidx
http://vx.netlux.org/vx.php?id=tidx

Functional polymorphic engines: formalisation, implementation and use cases

261

17.

18.

19.

20.

21.

22.

Noll, T.: Compiler construction, lectures 15 to 18: Semantic analy-
sis. RWTH Aachen University (2006). http://www-i2.informatik.
rwth-aachen.de/Teaching/Course/CB/2006/Slides/

Shannon, C.E.: A mathematical theory of communications. Bell
Syst. Tech. J. 27, 379-423, 623-656 (1948)

Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis (EICAR 2006 special issue). J. Comput. Virol. 2(1),
pp- 35-50, (2006)

Papadimitirou, C.H.: Computational Complexity. Addison Wesley,
Reading. ISBN:0-201-53082-1 (1995)

Jacob, G., Filiol, E., Debar, H.: Malwares as interactive machines: a
new framework for behavior modelling (WTCV’07 special issue).
J. Comput. Virol. 4(3) (2008)

Charlier, B.L., Mounji, A., Swimmer, M.: Dynamic detection and
classification of computer viruses using general behaviour patterns.
In: Proceedings of the 5th Virus Bulletin Conference (1995)

23.

24.

25.

26.

217.

Ford, R., Wagner, M., Michalske, J.: Gatekeeper ii: new approaches
to generic virus prevention. In: Proceedings of the 14th Virus Bul-
letin Conference (2004)

Christodorescu, M., Jha, S.: Testing malware detectors. In: Pro-
ceedings of ACM SIGSOFT: Internatinal Symposium on Software
Testing and Analysis (ISSTA 04), pp. 34—44 (2004)

Qemu: open source processor emulator. http://fabrice.bellard.free.
fr/qemu/

Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resis-
tance: obstructing static analysis of programs. Tech. Rep. CS-
2000-2012 (2000)

Horne, B., Matheson, L.R., Sheehan, C., Tarjan, R.E.: Dynamic
self-checking techniques for improved tamper resistance. In: Pro-
ceeding of the Digital Rights Management Workshop pp. 141-159
(2001)

@ Springer

http://www-i2.informatik.rwth-aachen.de/Teaching/Course/CB/2006/Slides/
http://www-i2.informatik.rwth-aachen.de/Teaching/Course/CB/2006/Slides/
http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/

	Functional polymorphic engines: formalisation, implementationand use cases
	Abstract
	1 Introduction
	2 From form-based to functional mutations
	3 Compiler theory applied to polymorphism
	3.1 Functional polymorphism formalization
	3.2 Characteristics of the mutation

	4 Implementation aspects
	4.1 Prototype architecture and results
	4.2 Syntactic behavior expansion
	4.3 Code generation according to semantic

	5 Use case for antivirus products assessment
	5.1 Methodology
	5.2 Test platform
	5.3 Evaluation deployment
	5.4 Global evolution in behavioral detection

	6 Use case in software protection
	7 Conclusion
	7.1 Contribution and ethical considerations
	7.2 Perspectives and solutions

	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

